

PB-003-1016003

Seat No. _____

B. Sc. (Mathematics) (Sem. VI) (CBCS) Examination

March / April - 2020

Optimization & Numerical Analysis - II : Paper - X
(New Course)

Faculty Code : 003

Subject Code : 1016003

Time : $2\frac{1}{2}$ Hours]

[Total Marks : **70**

Instructions : (1) All questions are compulsory.

(2) Numbers written to the right indicate full marks of question.

1 (a) Attempt the following objective type questions : 4
(1) Define : Convex function (with respect to linear programming problem).
(2) Define : A feasible solution of LPP.
(3) Define : Surplus variable with respect to LPP.
(4) Define : Degenerate basic feasible solution.

(b) Attempt any one out of two : 2
(1) State standard form of Linear Programming problem.
(2) State canonical form of Linear Programming problem.

(c) Attempt any one out of two : 3
(1) Explain Graphical method to solve Linear programming problem.
(2) Explain in brief artificial variable technique.

(d) Attempt any one out of two : 5
(1) Explain and write all the steps of simplex method.
(2) Explain the steps of Big-M method to solve the Linear Programming problem.

2 (a) Attempt the following objective type questions : 4
(1) Write the full form of VAM.
(2) State the names of the three method of finding initial solution of transportation problems.
(3) Which method is used to solve assignment problems ?
(4) What is the name of method to find optimum solution of transportation problem ?

(b) Attempt any one out of two : 2

- (1) Write the general mathematical form of transportation problem.
- (2) Solve the following assignment problem.

MEN				
	A	B	C	
Task 1	120	100	80	
2	80	90	110	
3	110	140	120	

(c) Attempt any one out of two : 3

- (1) Obtain the Initial solution of given transportation problem using NWCM method.

		To				Supply
		D_1	D_2	D_3	D_4	
From	S_1	19	30	50	10	7
	S_2	70	30	40	60	9
	S_3	40	8	70	20	18
Demand		5	8	7	14	34

- (2) Obtain the dual of the following primal Linear Programming problem.

$$\text{Maximize} \quad z = x_1 - x_2 + 3x_3$$

Subject to the constraints

$$x_1 + x_2 + x_3 \leq 10$$

$$2x_1 - x_2 - x_3 \leq 2$$

$$2x_1 - 2x_2 - 3x_3 \leq 6$$

$$\text{and } x_1, x_2, x_3 \geq 0$$

(d) Attempt any one out of two : 5

- (1) Write the steps of lowest cost entry method to find initial solution of transportation problem.
- (2) Explain the rules for constructing the dual from of given primal LPP.

3 (a) Attempt the following objective type questions. 4

- (1) State Gauss's forward interpolation formula.
- (2) What is the range of P for which the Gauss's backward interpolation formula is useful ?
- (3) Which formula is mean of Gauss's forward and Gauss's backward interpolation formula ?
- (4) What is the fourth divided difference of the polynomial of degree four ?

(b) Attempt any one out of two : 2

- (1) If $f(x) = x^3$ then find $f(1, 3, 5)$.
- (2) State the relation between divided differences and forward difference.

(c) Attempt any one out of two : 3

- (1) If $y_2 = 10, y_1 = 8, y_0 = 5, y_{-1} = 10$ then using Gauss's forward interpolation formula find the value of $y_{1/2}$.
- (2) For $x_0 = -1, x_1 = 1$ and $x_2 = 2$ then prove that sum of coefficient of Lagrange's interpolation is 1.

(d) Attempt any one out of two : 5

- (1) State and prove Gauss backward interpolation formula.
- (2) Derive Newton's divided difference formula.

4 (a) Attempt the following objective type questions : 4

- (1) What is the numerical differentiation ?
- (2) Which formula known as Newton-Cot's formula ?
- (3) For which value of n in general quadrature formula given Simpson's $\frac{3}{8}$ rule ?
- (4) State Simpson's $\frac{1}{3}$ rule.

(b) Attempt any one out of two : 2

- (1) Find $\frac{dy}{dx}$ using Newton's forward interpolation formula.
- (2) Find the value of $\int_2^6 \frac{dx}{x}$ by Simpson's $\frac{3}{8}$ rule.

(c) Attempt any one out of two : 3

- (1) Derive Trapezoidal rule.
- (2) In usual notation prove that

$$D^2 = \frac{1}{h^2} \left[\nabla^2 + \nabla^3 + \frac{11}{12} \nabla^4 + \frac{5}{6} \nabla^5 + \dots \dots \right]$$

(d) Attempt any one out of two : 5

- (1) Derive General quadrature formula.
- (2) Derive Simpson's $\frac{3}{8}$ rule.

5 (a) Attempt the following objective type questions : 4

- (1) State Taylor's formula to solve ordinary differential equation.
- (2) In which interval to integrate y' to derive Milne's predictor formula to solve ordinary differential equation ?
- (3) To find y , write Range's formula to solve ordinary differential equation.
- (4) To find y , write Range Kutta's formula to solve ordinary differential equation.

(b) Attempt any one out of two : 2

- (1) Using Picard's formula to find $y(0.1)$ given that $y' = 1 + xy, y(0) = 1, h = 0.1$
- (2) Explain Euler's method to solve ordinary differential equation.

(c) Attempt any one out of two : 3

- (1) Find the value of y at $x = 0.1$ by Euler's method

$$\frac{dy}{dx} = 1 - y, \quad y(0) = 0, \quad h = 0.1$$

- (2) Explain Euler's modified method to solve ordinary differential equation.

(d) Attempt any one out of two : 5

- (1) Explain Picard method to solve ordinary differential equation.
- (2) Derive Milne's predictor and corrector formula to solve ordinary differential equation.
